Greek letters are ubiquitous in mathematics and statistics. This appendix provides a reference for the Greek alphabet, including pronunciation and common uses in statistical contexts.
49.1 The Greek Alphabet
Letter
Lowercase
Uppercase
Name
Pronunciation
Common Statistical Uses
1
α
Α
Alpha
AL-fah
Significance level (Type I error rate); regression intercept
2
β
Β
Beta
BAY-tah
Type II error rate; regression coefficients; slope parameters
3
γ
Γ
Gamma
GAM-ah
Gamma distribution; shape parameter
4
δ
Δ
Delta
DEL-tah
Change or difference; effect size (Cohen’s d uses Roman d)
5
ε
Ε
Epsilon
EP-si-lon
Error term in models; small quantity approaching zero
Mastering Greek letters is essential for reading and writing statistical notation. The most important letters to memorize are:
μ, σ, ρ: Population mean, standard deviation, and correlation
α, β: Significance level and Type II error (or regression coefficients)
Σ: Summation
χ²: Chi-square
With practice, these symbols become as natural as the Roman alphabet, and they provide a universal language for expressing statistical concepts precisely and concisely.
# Greek Letters in Mathematics and Statistics {#sec-greek-letters}Greek letters are ubiquitous in mathematics and statistics. This appendix provides a reference for the Greek alphabet, including pronunciation and common uses in statistical contexts.## The Greek Alphabet| Letter | Lowercase | Uppercase | Name | Pronunciation | Common Statistical Uses ||:------:|:---------:|:---------:|:-----|:--------------|:------------------------|| 1 | α | Α | Alpha | AL-fah | Significance level (Type I error rate); regression intercept || 2 | β | Β | Beta | BAY-tah | Type II error rate; regression coefficients; slope parameters || 3 | γ | Γ | Gamma | GAM-ah | Gamma distribution; shape parameter || 4 | δ | Δ | Delta | DEL-tah | Change or difference; effect size (Cohen's d uses Roman d) || 5 | ε | Ε | Epsilon | EP-si-lon | Error term in models; small quantity approaching zero || 6 | ζ | Ζ | Zeta | ZAY-tah | Rarely used in statistics || 7 | η | Η | Eta | AY-tah | Effect size (η²); learning rate || 8 | θ | Θ | Theta | THAY-tah | Generic parameter; angle || 9 | ι | Ι | Iota | eye-OH-tah | Rarely used in statistics || 10 | κ | Κ | Kappa | KAP-ah | Cohen's kappa (agreement); condition number || 11 | λ | Λ | Lambda | LAM-dah | Rate parameter (Poisson, exponential); eigenvalue; Wilks' lambda || 12 | μ | Μ | Mu | MYOO | Population mean || 13 | ν | Ν | Nu | NOO | Degrees of freedom || 14 | ξ | Ξ | Xi | KSEE or ZIGH | Rarely used; sometimes for random variables || 15 | ο | Ο | Omicron | OM-i-kron | Rarely used (resembles Roman O) || 16 | π | Π | Pi | PIE | Mathematical constant (≈ 3.14159); product notation (Π) || 17 | ρ | Ρ | Rho | ROW | Population correlation coefficient; autocorrelation || 18 | σ | Σ | Sigma | SIG-mah | Population standard deviation (σ); summation (Σ) || 19 | τ | Τ | Tau | TAW (rhymes with cow) | Kendall's tau; time constant || 20 | υ | Υ | Upsilon | OOP-si-lon | Rarely used in statistics || 21 | φ | Φ | Phi | FYE or FEE | Phi coefficient; standard normal PDF (φ); golden ratio || 22 | χ | Χ | Chi | KYE (rhymes with sky) | Chi-square distribution and test (χ²) || 23 | ψ | Ψ | Psi | SIGH or PSEE | Rarely used; sometimes for angles or wave functions || 24 | ω | Ω | Omega | oh-MAY-gah | Effect size (ω²); angular frequency |## Most Commonly Used Letters in Statistics### Population ParametersThe following Greek letters conventionally represent **population parameters** (true but unknown values):- **μ (mu)**: Population mean- **σ (sigma)**: Population standard deviation- **σ² (sigma squared)**: Population variance- **ρ (rho)**: Population correlation coefficient- **π (pi)**: Population proportion (also the mathematical constant)- **β (beta)**: Population regression coefficients### Hypothesis Testing- **α (alpha)**: Significance level; probability of Type I error (rejecting a true null hypothesis). Commonly set to 0.05.- **β (beta)**: Probability of Type II error (failing to reject a false null hypothesis). Power = 1 - β.- **χ² (chi-square)**: Test statistic for categorical data analysis### Effect Sizes- **η² (eta squared)**: Proportion of variance explained in ANOVA- **ω² (omega squared)**: Less biased estimate of variance explained- **φ (phi)**: Effect size for 2×2 contingency tables### Distributions- **λ (lambda)**: Rate parameter for Poisson and exponential distributions- **Γ (Gamma)**: The Gamma function and Gamma distribution- **θ (theta)**: Generic parameter in probability distributions### Summation and Products- **Σ (capital sigma)**: Summation notation: $\sum_{i=1}^{n} x_i$- **Π (capital pi)**: Product notation: $\prod_{i=1}^{n} x_i$## Writing Greek Letters### In LaTeX and QuartoGreek letters are written in LaTeX (and thus in Quarto documents) using backslash commands:```latex$\alpha$ → α $\Alpha$ → Α$\beta$ → β $\Beta$ → Β$\gamma$ → γ $\Gamma$ → Γ$\delta$ → δ $\Delta$ → Δ$\epsilon$ → ε $\mu$ → μ$\sigma$ → σ $\Sigma$ → Σ$\chi$ → χ $\lambda$ → λ$\theta$ → θ $\rho$ → ρ```### In RR supports Greek letters in plots using the `expression()` function:```{r}#| eval: false# Axis labels with Greek lettersplot(x, y,xlab =expression(mu),ylab =expression(sigma^2))# More complex expressionstitle(expression(paste("Mean = ", mu, ", SD = ", sigma)))# In ggplot2library(ggplot2)ggplot(data, aes(x, y)) +geom_point() +labs(x =expression(alpha),y =expression(beta))```## Conventions and Mnemonics### Roman vs. Greek LettersA useful convention in statistics:- **Greek letters** represent **population parameters** (unknown, fixed values)- **Roman (Latin) letters** represent **sample statistics** (calculated from data)| Population Parameter | Sample Statistic ||:---------------------|:-----------------|| μ (mu) - population mean | $\bar{x}$ - sample mean || σ (sigma) - population SD | s - sample SD || ρ (rho) - population correlation | r - sample correlation || β (beta) - population slope | b - sample slope || π (pi) - population proportion | p̂ - sample proportion |### Memory Aids- **α (alpha)** for significance level: "A" comes first, and we set alpha first before testing- **β (beta)** for slope: "B" is for the coefficient "B" in y = a + bx- **μ (mu)** for mean: Think "μ" looks like a "u" turned sideways—"u" for "average of you all"- **σ (sigma)** for standard deviation: "S" for Sigma, "S" for Standard deviation- **Σ (capital sigma)** for sum: "S" for Sum- **ρ (rho)** for correlation: "R" for Rho, "R" for R-value (correlation)- **χ (chi)** for chi-square: Looks like an "X"—think "X marks the spot" for testing categories## Common Formulas Using Greek Letters### Normal Distribution$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$### Z-score$$z = \frac{x - \mu}{\sigma}$$### Linear Regression Model$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$where $\epsilon_i \sim N(0, \sigma^2)$### Correlation Coefficient$$\rho = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$### Chi-Square Test Statistic$$\chi^2 = \sum \frac{(O - E)^2}{E}$$### ANOVA F-ratio$$F = \frac{MS_{\text{between}}}{MS_{\text{within}}} = \frac{\sigma^2_{\text{between}}}{\sigma^2_{\text{within}}}$$## SummaryMastering Greek letters is essential for reading and writing statistical notation. The most important letters to memorize are:- **μ, σ, ρ**: Population mean, standard deviation, and correlation- **α, β**: Significance level and Type II error (or regression coefficients)- **Σ**: Summation- **χ²**: Chi-squareWith practice, these symbols become as natural as the Roman alphabet, and they provide a universal language for expressing statistical concepts precisely and concisely.